Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Jednostkowe procesy w inżynierii środowiska
Name of the course in English	Unit processes in environmental engineering
Number of the ECTS points	1
Language of instruction	Polish
Category of the course	Elective
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power
	engineering
Person responsible for the course	Andrzej Bielski, doctor hab., MSc in Eng., professor
Contact	of CUT
	andrzej.bielski@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer Laboratory	Project class	Seminar
3	G	15	0	0	0	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

	<u> </u>
Code	Objective description
Objective 1	Gaining knowledge in the field of basic unit processes used in environmental
	technologies
Objective 2	Acquiring computational skills related to the design of selected devices and reactors
	used in environmental technologies.

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome symbol in the CUT SD	Methods of verification
	OUTCOMES RELATED TO KNOWLEDG		
EUW1	The doctoral student has the knowledge of methods for describing the kinetics of selected chemical and biochemical processes	E_W01	Involvement in class activities
EUW2	The doctoral student has the knowledge of the calculations of devices and reactors used in environmental technologies	E_W02	Involvement in class activities
	OUTCOMES RELATED TO SKILLS		
EUU1	Acquiring computational skills in the field of speed of selected processes. Acquiring computational skills related to the design of selected devices and reactors	E_U01	Graded paper

OUTCOMES RELATED TO SOCIAL COMPETENCES				
EUK1	Acquiring the ability to present independent		Discussion	
	opinions on individual processes and creativity in	E_K01		
	presenting views	E_K03		

Course outline

No.	Contents	Learning	No. of
		outcomes for the	hours
		course	
	LECTURE		
W1	Kinetics of chemical and biochemical processes	EUW1, EUW2,	
		EUU1, EUK1	6
W2	Basic types of reactors, mass balance	EUW1, EUW2,	
		EUU2	2
W3	Reactors models	EUW1, EUW2,	3
		EUU2, EUK2,	
W4	Mass exchangers	EUW1, EUW2,	4
		EUU2, EUK2	

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to	
	the completion of an activity type	
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER	
Hours allotted in the syllabus	15	
Consultations	1	
Examination / course credit assignment	2	
HOURS WITHOUT THE PARTICIPA	TION OF THE ACADEMIC TEACHER	
Independent study of the course contents	8	
Preparation of a paper, report, project,	4	
presentation, discussion		
ECTS POINTS STATEMENT		
Total number of hours	30	
The ECTS points number	1	

Preliminary requirements

No.	Requirements
1	Knowledge of differential calculus, the ability to use a spreadsheet and a text editing
	program
2	Knowledge of the English language

Course credit assignment conditions / method of the final grade calculation

No.	Description
	COURSE CREDIT ASSIGNMENT CONDITIONS
1	75% attendance in class.
2	Delivery/ submission of a paper presentation.
	METHOD OF THE FINAL GRADE CALCULATION
	Credit assigned on the grounds of weighted average of the result of the discussion and the
	delivery of the paper presentation.

Additional information

None

The course reading list

1	F. Strek - Mixing and mixers, Warsaw, 1979, Polish Scientific Publishers PWN
2	J. Szarawara, J. Skrzypek - Fundamentals of chemical reactor engineering, Warsaw, 1980,
_	Scientific and Technical Publishers
3	Z. Kembijowski, St. Michałowski, Cz. Strumiłło, R. Zarzycki - Theoretical foundations of
	chemical and process engineering, Warsaw, 1985, Scientific and Technical Publishers
4	K.F. Pawłow, P.G. Romankow, A.A. Noskow - Examples and tasks in the field of chemical
_	apparatus and engineering, Warsaw, 1981, Scientific and Technical Publishers
5	J. Pikon - Chemical apparatus, Warsaw, 1978, Polish Scientific Publishers PWN
6	W.W. Kafarov, A. Ju. Vinarov, L.S. Gordiejew - Modeling of biochemical reactors, Warsaw,
0	1983, Scientific and Technical Publishing House
7	R.Zarzycki, M.Imbierowicz, M.Stelmachowski - Introduction to engineering and
′	environmental protection, part: 1, 2, Warsaw, 2007, Scientific and Technical Publishers
8	Metcalf & Eddy, Wastewater Engineering Treatment and Reuse, Mc Graw Hill, 2004
9	Crittenden J. C., Trussell R. R., Hand D. W., Howe K. J., Tchoobanoglous G., Borchardt J. H.
9	MWH's Water Treatment pronciples and design, John Wiley & Sons, 2012